

FLOODPLAIN ANALYSIS AND CONCEPTUAL LEVEE ALIGNMENT ALONG THE GILA RIVER

AHMAD ALFALLAJI

ENVIRONMENTAL ENGINEER

JENNALISE RAPINCHUK Civil Engineer

ABDULAZIZ EBRAHIM

ENVIRONMENTAL ENGINEER

CHARLES WILSON

CIVIL ENGINEER

Project Description

- Project Location: Duncan, Arizona
- Problem: The Town of Duncan rests in the floodplain of the Gila River and does not have adequate flood protection
- Objectives
 - Analyze existing floodplain model
 - Create a current floodplain model
 - Propose a levee alignment that will be able to protect Duncan
 - Must meet requirements set by the Code of Federal Regulations Section 65.10

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Project Background

- Project Location: Duncan, Arizona
- Current Flood Protection
 - Agricultural dike in place
 - Not a levee
 - Does not protect against the 100 year flood
 - Overtopping begins around 24,000 cfs
 - The entire downtown area can experience flooding

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Client Expectations

Client

- Philip Ronnerud, Greenlee County Engineer
- Client's Expectations
 - Create various HEC-RAS models that will be used to choose an alignment for the new levee
- Deliverables
 - Effective Model
 - Corrected Effective Model
 - Proposed Conditions Models

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Data Collection

Hydraulics and Hydrology

- Previous flood studies
- Client requested 48,000 cfs be used for 100 year flood

LiDAR Data

- Provided by client
- Used in Civil 3D to determine elevations for cross sections and the Gila River reach

Regulations

- Code of Federal Regulations 65.10
- Flood Insurance Study Guidelines and Specifications for Study Contractors

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Data Collection

Field Visit

 Met with client and outside advisor to see project location and past flood damage

Made observations on:

- Agricultural dike in place
- Potential tie in locations for proposed levee
- Vegetation in floodplain
- Important infrastructure

Data Collection

Analysis

Project Costs

Effective Model

Task

 Recreate existing floodplain model produced by FEMA in 1976

Purpose

 Ensure existing model is accurate and that correct testing methods are being followed

Procedures

- Input provided HEC-2 data from original model into HEC-RAS
- Run HEC-RAS model under same flow conditions (28,500 cfs) to match original results

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Effective Model

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Corrected Effective Model

Task

- Create floodplain model that reflects current topography
- Purpose
 - Provides insight to the flood risks of Duncan
- Procedures
 - Export cross sections and topography data from Civil 3D to HEC-RAS
 - Determine Manning's Roughness Coefficient values
 - Run HEC-RAS model with various flow conditions
 - 100 year flow: 48,000 cfs
 - Storm of Record: 58,700 cfs

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Proposed Conditions Model

Task

 Develop levee alignment and analyze its impact to flooding conditions

Purpose

 Provides insight to Duncan community on how to control Gila River flooding

Procedures

- Use corrected effective model information
- Determine most suitable alignment and height specification for levee

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Model Comparison

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Alternative Proposed Conditions

Summary of Project Costs

Personnel	Hours	Price per hour (\$/hr)	Total Price (\$)
Senior Engineer (SENG)	91	95.00	8,645.00
Professional Engineer (PE)	121	55.00	6,655.00
Engineer In Training (EIT)	156	35.00	5,460.00
Intern	247	20.00	4,940.00
Total Hours	615	TOTAL COST (\$)	25,700.00

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Conclusion

- Project Purpose
 - Update floodplain boundaries of Gila River in Duncan, AZ
 - Inform community of flood risk
 - Propose 1.9 mile long levee alignment to protect the Town of Duncan
- Further Recommendations
 - Floodplain remediation
 - Continuation of floodplain analysis
 - Detailed levee design
- Project's Future
 - Spring 2016 NAU Capstone Project

Project Description

Data Collection

Analysis

Project Costs

Conclusion

Acknowledgements

Bridget N. Bero, Ph.D., P.E. Grading Instructor, Professor and Department Chair

> Mark Lamer, P.E. Grading Instructor, NAU Lecturer

Thomas R. Loomis, P.E., RLS, CFM, Hydrologist *Outside Advisor to Project*

> Wilbert I. Odem, Jr., Ph.D., P.E. Technical Advisor, NAU Professor

Philip Ronnerud, P.E. *Client of Project, Greenlee County Engineer*

Charles M. Schlinger, Ph.D., P.E., R.G., P.Gp. Technical Advisor

References

[1]	FEMA, "Flood Insurance Study: Greenlee County, Arizona," 28 September 2007. [Online]. Available:
	http://www.co.greenlee.az.us/engineering/Flood%20Insurance%20Study.pdf. [Accessed 15 February 2015].

[2] "Greenlee County History: Duncan," 2015. [Online]. Available: http://www.co.greenlee.az.us/historyduncan.aspx. [Accessed 24 February 2015].

- [3] N. W. Service, "Advanced Hydrologic Prediction Service," 28 February 2015. [Online]. Available: http://water.weather.gov/ahps2/hydrograph.php?gage=duua3&wfo=twc. [Accessed 28 February 2015].
- [4] P. Ronnerud, Interviewee, *Greenlee County Flooding*. [Interview]. 11 February 2015.
- [5] Arizona Department of Water Resources, Reconnaissance Report of the Gila River Flood Control Project, 1981.
- [6] Natural Channel Design, Inc., "Apache Grove Hydrology Design," 2015.
- [7] Code of Federal Regulations 44, Office of the Federal Register National Archives and Records Administration, 2002.
- [8] Flood Insurance Study Guidelines and Specifications for Study Contractors, 2007.
- [9] FEMA, "Flood Map Service Center," 28 September 2007. [Online]. Available: https://msc.fema.gov/portal/search?AddressQuery=Duncan%2C%20Arizona. [Accessed 1 February 2007]. [Accessed 1 February 2015].

^[10] Google, "Maps," 2015. [Online].

Thank You

s Roghness Coefficient	Roughness Description
nel	
0.036	clean, straight, full stage, no rifts or deep pools, But more stones and weeds
ıs	
0.3	Pasture, no brush, short grass
0.035	Cultivated areas, mature field crops
0.04	light brush and trees
0.045	medium to dense brush
0.05	scattered brush, heavy weeds
0.055	medium to dense brush
0.06	dense willows, summer, straight, but with heavy growth of sprouts
0.065	dense willows, summer, straight, but with heavy growth of sprouts
0.075	dense willows, summer, straight, but with heavy growth of sprouts
0.08	heavy stand of timber, a few down trees, little undergrowth, flood stage below branches
0.085	heavy stand of timber, a few down trees, little undergrowth, flood stage below branches
0.09	heavy stand of timber, a few down trees, little undergrowth, flood stage below branches
0.095	heavy stand of timber, a few down trees, little undergrowth, flood stage below branches
0.1	heavy stand of timber, a few down trees, little undergrowth with flood stage reaching branches
0.12	heavy stand of timber, a few down trees, little undergrowth with flood stage reaching branches
0.13	heavy stand of timber, a few down trees, little undergrowth with flood stage reaching branches

cc		INITIAL IDENTIFICATION	FLOOD HAZARD BOUNDARY MAP REVISION DATE(S)	FLOOD INSURANCE RATE MAP EFFECTIVE DATE	FLOOD INSURANCE RATE MAP REVISION DATE(S)
Clifton Duncar Greenle (Uninc	n, Town of n, Town of lee County corporated Areas)	June 7, 1974 September 13, 1974 October 25, 1977	March 25, 1977 December 5, 1975 N/A	March 1, 1984 August 2, 1982 July 18, 1985	N/A N/A September 4, 1987
TABLE 9	FEDERAL EMER GREEN AND INC	GENCY MANAGEMENT A	IGENCY Z	COMMUNITY MAP	HISTORY

Table 1 Flood Frequency Analysis for the Gila River

Flood frequency analysis results for the Virden and Clifton USGS Gages and flood estimates for the project site.

	USGS Gage #9432000 ⁽¹⁾	USGS Gage #9442000 ⁽¹⁾	Project Site]
RECURRENCE	GILA RIVER BELOW BLUE CREEK, NEAR VIRDEN, NM (Watershed = 3,203 mi ²)	GILA RIVER NEAR CLIFTON, AZ (Watershed = 4,010 mi ²)	APACHE GROVE (Watershed = 3,769 mi ²)	
Q _{1.25}	2,410	2,820	2,650	(
Q _{1.5}	3,600	4,030	3,790	(
Q ₂	5,440	5,870	5,520	(
Q5	12,100	12,400	12,400	(
Q ₁₀	18,200	18,300	18,300	(
Q ₂₅	28,100	27,900	28,100	(
Q ₅₀	37,000	36,800	37,000	(
Q ₁₀₀	47,400	47,100	47,400	(

- **1870s**: Duncan is established
- **1945**: Research of Dam sites along upper Gila River (Army Corps of Engineers)
- **1972**: Levees overtopped and eroded-27,200 cfs: Non-agriculture damages= 1.5 million
- 1975: Flood Boundary Map Revision Date
- 1978: 58,700 CFS \$3 million in damage (ADWR)
- **1979**: Evaluation of feasibility for designing a 2 mile levee system to protect Duncan (Corps of Engineers)-Turned down due to unfavorable project economics
- **1980**: After flood, the Soil Conservation Service restored damaged levees through the Emergency Watershed Protection Program
- **1981** ADWR Reconnaissance Report of potential levee design plan(s) of 7.5/2.3(+1.9 miles to protect sewage plant) mile reach along Gila River. Objective is to provide the maximum degree of protection at the least possible cost
- 1988 HEC2 ADWR Analysis of Gila River
- 1990 HEC2 ADWR Analysis of Gila River
- 2001-2003 USBR Geomorphic study hydraulic model input files (HEC-RAS)
- Feb 2005: Claims Coordinating Office (CCO) meeting for Greenlee Countywide DFIRM and FIS
- Feb 2007: Final DFIRM and FIS meeting
- 2012: Airborne Lidar Survey of Southeast Arizona 164 square miles (Kimley-Horne)
- 2015 100 Year flow is updated from 28,500 cfs to 47,400 cfs